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Abstract. The Wigner-function approach to the quantum theory of electron transport in
mesoscopic systems is reviewed. Delta-like or ‘particle’ contributions to the Wigner function are
introduced that evolve in time along ‘paths’ formed by ballistic free flights separated by scattering
processes like semiclassical particles. A Monte Carlo algorithm can be developed, based on such
Wigner paths. Furthermore, a two-time Green functionG< can be used to define a Wigner function
where momentum and energy are treated as independent variables. The same Monte Carlo approach
would then also yield the spectral function for the electron interacting with the phonon gas.

1. Introduction

The astonishing developments in semiconductor growth, characterization and processing
technologies of the last two decades opened new exciting horizons in the field of experimental
and theoretical semiconductor physics. The high degree of control of the material composition
and of the sample geometry obtained with experimental techniques like molecular-beam
epitaxy and electron-beam lithography allowed the production of low-dimensional structures,
where transport and optical properties are strictly related to the particular dimensionalities
of the systems. Furthermore, semiconductor structures are now available where the sample
dimensions are comparable with the electron wavelength. They can sometimes be so small and
so pure that, at low temperatures, carriers can cross the device under the action of an external
field without experiencing any scattering event at all. Under these conditions the quantum
nature of the charge carriers emerges, giving rise to new effects, not observed before for large
samples.

The theoretical research in the field of semiconductor physics received an extraordinary
impulse from the large amount of experimental data for these structures. New quantum
theoretical approaches have been developed which go beyond the effective-mass theorem
and the concept of the distribution function, and new effects predicted theoretically have
been detected experimentally in real structures. The tremendous acceleration imparted by
the increasing knowledge of the fundamental properties of low-dimensional and mesoscopic
structures has already produced (and is still producing at increasing rates) technological
applications.

The Wigner formulation of quantum mechanics [1] based on the concept of the Wigner
function (WF) is particularly suitable for the study of quantum transport in mesoscopic systems
since it allows one to describe quantum mechanical effects using a function defined in an(r,p)

‘phase space’, in analogy with what is done for classical systems. Furthermore, as we shall
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see, Wigner paths (WP) in this phase space can be defined which both provide a pictorial
representation of the quantum evolution of the system of interest and constitute a useful tool
for providing numerical solutions of the quantum equation describing the time evolution of
the system of interest.

In this article a review of the authors’ most recent advancements of the WF theory applied
to the study of transport properties of mesoscopic systems is presented. In section 2 the
definition of the WF together with some of its fundamental properties are summarized for the
sake of completeness. In section 3 the theory is applied to coherent transport, i.e., to the case of
transport in the absence of phase-breaking scattering. In section 4 the formulation of a general
evolution equation for the WF of an electron gas in the presence of external/structural potentials
and phonon scattering is presented, and the Neumann expansion of this equation is discussed
with a view to using a perturbative approach to its solution. In section 5 the concept of Wigner
paths is introduced and its use in a Monte Carlo-like solution of the WF evolution equation
is discussed. In section 6 the two-time Wigner function is introduced as a theoretical tool for
carrying information about both the carrier energy and momentum distributions, separately.
In section 7 some conclusions are finally summarized.

2. The Wigner function

For a system formed by a single electron described by the density matrix operatorρ, the WF
is defined as [1,2]

fW(r,p, t) =
∫

ds e−(i/h̄)p·s
〈
r +

s

2

∣∣∣∣∣ρ(t)
∣∣∣∣∣r − s2

〉
. (1)

Here the normalization has been chosen in such a way that

1

h3

∫
dr
∫

dp fW(r,p, t) = 1. (2)

In this way, iffW is multiplied by the total number of electronsN in the system, then it should
be comparable with the occupation number.

The WF is a real numerical function defined in the phase space(r,p)with many properties
that resemble those of the classical distribution function. In particular, the mean value of the
measure of a quantity described by the observableA, averaged over the statistical ensemble,
is given by

〈A〉 = 1

h3

∫
dr
∫

dp AW(r,p)fW (r,p, t) (3)

where

AW(r,p) =
∫

ds e−(i/h̄)p·s
〈
r +

s

2

∣∣∣∣∣A
∣∣∣∣∣r − s2

〉
. (4)

It should be noted that in equation (3) the WF appears linearly: the WF is already quadratic in
the wavefunction and already itself contains the interference information.

Furthermore,

1

h3

∫
dr fW(r,p, t) = |8(p, t)|2 (5)

1

h3

∫
dp fW(r,p, t) = |9(r, t)|2 (6)
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where8 and9 are the wavefunctions of the system in momentum space and real space
respectively and the bar indicates the ensemble average.

The WF, however, is not a probability density, since it can assume negative values, as a
consequence of phase information. It is often called a ‘quantum distribution function’.

Furthermore, the WF can contain very rapid oscillations as a function ofr and/orp.
These could be eliminated with a coarse graining of phase space, as is done with the classical
distribution function (which would otherwise consist of infinite spikes where the particles are,
separated by regions with null value). More often, an averaging of the WF with a bi-Gaussian
weighting is performed, yielding the Husimi distribution [2] that assumes only non-negative
values.

Finally, we recall that the WF can assume values different from zero in regions of space
where the wavefunction is zero, and where, therefore, the particle cannot be found (e.g., inside
an Aharonov–Bohm ring).

If the full system, formed by the electron and the phonon gas, is considered, a generalized
WF can be defined, that includes the phonon states in the density matrix [3]:

fW(r,p, {nq}, {n′q}, t) =
∫

ds e−(i/h̄)p·s
〈
r +

s

2
, {nq}

∣∣∣∣∣ρ(t)
∣∣∣∣∣r − s2, {n′q}

〉
(7)

wherenq is the occupation number of the phonon modeq. In order to recover the original
electron WF, a trace over the phonon states must be taken. As we shall see in the following,
however, as long as only electron variables are considered, a closed equation for the WF can
easily be obtained. In contrast, when phonon variables are added, the trace over phonons
of the resulting equation does not lead to a closed equation for the electron WF, since the
trace operation does not commute with the electron–phonon interaction Hamiltonian. The
usual hierarchy of equations would be obtained [4]. In the present scheme, the equation is
perturbatively solved for the generalized WF and the trace over the phonons is taken not for
the equation itself, but for the solution obtained.

3. Coherent evolution

We study in this section the quantum dynamical evolution of an electron system in the absence
of phonon interaction. This is actually the case for very pure semiconductor structures at
extremely low temperatures. Let us assume that the eigenvaluesεn and the eigenvectors|ϕn〉
of the electron Hamiltonian can be determined. If the basis of Hamiltonian eigenstates is
inserted in equation (1), the WF describing the coherent evolution of the system is obtained:

fW(r,p, t) =
∑
nm

fnm(r,p)e
−(i/h̄)(εn−εm)(t−t0) 1

h3

∫
ds
∫

dp′ f ∗nm(s,p
′)fW (s,p′, t0) (8)

where the coefficientsfnm are given by

fnm(r,p) =
∫

ds e−(i/h̄)p·s〈r + s/2|ϕn〉〈ϕm|r − s/2〉. (9)

They constitute a unitary transformation and connect the generalized WF to the density matrix
ρ(n,m, t) and vice versa. The integral equation in equation (8) is linear in the unknown
function fW . This property guarantees that, if the WF att = t0 is the sum of several
contributions, then each of them will evolve according to equation (8), and the solution of the
equation at any given timet > t0 will be given by the sum of the single contributions evaluated
at the same time. Even though the WF is real, interference between these contributions can
still occur as a cancellation of positive and negative values. If the initial WF is considered
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as the integral ofδ-like contributions, each of them, in the absence of external forces, carries
its value following a classical path. In fact, for the case of a basis set of plane waves, the
coefficients in equation (9) are given by

fnn′(r,p) = e(i/h̄)(pn−pn′ )·rδ
(
p− pn + pn′

2

)
. (10)

The ballistic evolution of an initialδ-like contribution to the WF,δ(r − r0) δ(p − p0), is
obtained from equation (8) after some straightforward calculations and turns out to be

δ(r − [r0 + p/m(t − t0)]) δ(p− p0). (11)

The above equation can be interpreted as follows: eachδ-like contribution to the WF, in the
absence of external forces, carries its value following a classical path. This property is well
illustrated in figure 1, where the free evolution of the WF for a Gaussian ‘minimum-uncertainty’
wave packet is illustrated in two-dimensional projections onto the plane(z, pz) at different
times after the initial one. The WF also has a ‘wave-packet’ form which is ‘deformed’ in time
due to the different paths followed by its ‘δ-like’ components: representative points in phase
space corresponding to high momentum values move faster than low-momentum representative
points [5].
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Figure 1. Free evolution in two-dimensional Wigner phase space of a WF for a wave packet. Each
‘δ’-contribution of the WF follows a classical trajectory.

The results discussed above can be generalized to the case of electron Hamiltonians
including a constant force or a harmonic potential. In these cases in fact, in the absence of
collisions, the Wigner equation is identical to the Boltzmann equation for classical dynamics,
as can be seen from equation (21), below. This concept of Wigner paths [6] will be discussed
extensively in section 5 and has guided us in the development of the theoretical approach and
of its numerical implementation.
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4. The integro-differential equation

The general system that we are considering in this paper is formed by one electron (or,
equivalently, many non-interacting electrons—ones that are not even interacting through the
exclusion principle) subject to a constant and uniform accelerating fieldE, to a structure
potentialV (r) and to interaction with phonons. The Hamiltonian of the system is given by

H =H0 + V (r) + Vf (r) +Hp +He−p (12)

where

Vf (r) = −eE · r
and

H0 = − h̄
2

2m
∇2
r

Hp =
∑
q

b†
qbqh̄ωq

He−p =
∑
q

ih̄F (q)(bqe
iq·r − b†

qe
−iq·r)

are, respectively, the free-electron term (withm-electron effective mass), the Hamiltonian for
the free-phonon system and the electron–phonon interaction term. In the above expressions,bq
andb†

q are the annihilation and creation operators for the phonon modeq, ωq is the frequency
of the phonon modeq andF(q) is a function depending on the type of phonon scattering
analysed.

If the time derivative of equation (1) is taken and the Liouville–von Neumann equation
for the evolution of the density matrix is used, we find

∂

∂t
fW (r,p, {nq}, {n′q}, t) =

1

ih̄

∫
ds e−(i/h̄)p·s

〈
r +

s

2
, {nq}

∣∣∣∣∣[H, ρ(t)]
∣∣∣∣∣r − s2, {n′q}

〉
. (13)

In the following, the different terms of the Hamiltonian in equation (12) will be separately
considered and developed.

4.1. The free-electron term

The term containingH0 gives rise to a term containing the space derivative of the distribution:

1

ih̄

∫
ds e−(i/h̄)p·s

〈
r +

s

2
, {nq}

∣∣∣∣∣[H0, ρ(t)]

∣∣∣∣∣r − s2, {n′q}
〉

= − h̄

i2m

∫
ds e−(i/h̄)p·s

{
∇2
r9(r + s/2, {nq}, t)9∗(r − s/2, {n′q}, t)

− 9(r + s/2, {nq}, t)∇2
r9
∗(r − s/2, {n′q}, t)

}
= 2

m

∫
ds pe−(i/h̄)p·s ·

{
∇s9(r + s/2, {nq}, t) 9∗(r − s/2, {n′q}, t)

− 9(r + s/2, {nq}, t)∇s9
∗(r − s/2, {n′q}, t)

}
= − p

m
· ∇rfW(r,p, {nq}, {n′q}, t). (14)
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4.2. Potential scattering

The term due to the structure potential profile leads to [7]

1

ih̄

∫
ds e−(i/h̄)p·s

〈
r +

s

2
, {nq}

∣∣∣∣∣[V (r), ρ(t)]
∣∣∣∣∣r − s2, {n′q}

〉

=
∫

dp VW(r,p− p′)fW (r,p′, {nq}, {n′q}, t) (15)

where the transfer functionVW is defined by

VW(r,p) = 1

h3

∫
ds e−(i/h̄)p·s

1

ih̄

[
V

(
r − s

2

)
− V

(
r +

s

2

)]
. (16)

4.3. The constant-field term

If the expression above for a general potentialV (r) is specialized to the case of a constant
uniform electric field, such thatV (r) = −eE · r, then, after some calculation, one obtains

1

ih̄

∫
ds e−(i/h̄)p·s

〈
r +

s

2
, {nq}

∣∣∣∣∣[Vf (r), ρ(t)]
∣∣∣∣∣r − s2, {n′q}

〉

= 1

ih̄

∫
ds e−(i/h̄)p·s(eE · s)9

(
r +

s

2
, {nq}, t

)
9∗
(
r − s

2
, {n′q}, t

)
= e

∫
ds E · ∇pe

−(i/h̄)p·s9
(
r +

s

2
, {nq}, t

)
9∗
(
r +

s

2
, {n′q}, t

)
= eE · ∇pfW(r,p, {nq}, {n′q}, t). (17)

Note that the same result would be obtained for a harmonic potential.

4.4. The free-phonon term

The term describing the free evolution of the phonon bath may be written as

1

ih̄

∫
ds e−(i/h̄)p·s

〈
r +

s

2
, {nq}

∣∣∣∣∣[Hp, ρ(t)]
∣∣∣∣∣r − s2, {n′q}

〉

= 1

ih̄

∫
ds e−(i/h̄)p·s

∑
q′

{〈r + s/2, {nq}|b†
q′bq′h̄ωq′ |9〉〈9|r − s/2, {n′q}〉

− 〈r + s/2, {nq}|9〉〈9|b†
q′bq′h̄ωq′ |r − s/2, {n′q}〉

}
= 1

ih̄
(E({nq})− E({n′q}))fW (r,p, {nq}, {n′q}, t) (18)

where

E({nq}) =
∑
q

nqh̄ωq (19)

is the energy of the phonon state{nq}.
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4.5. Phonon scattering

The term due to electron–phonon interaction gives rise to four terms:

1

ih̄

∫
ds e−(i/h̄)p·s

〈
r +

s

2
, {nq}

∣∣∣∣∣[He−p, ρ(t)]
∣∣∣∣∣r − s2, {n′q}

〉

=
∫

ds e(i/h̄)p·s
∑
q′
F(q′)

×
{

eiq′·(r−s/2)√nq′ + 19

(
r − s

2
, {n1, . . . , nq′ + 1, . . .}

)
9∗
(
r +

s

2
, {n′q}

)
− e−iq′·(r−s/2)√nq′9

(
r − s

2
, {n1, . . . , nq′ − 1, . . .}

)
9∗
(
r +

s

2
, {n′q}

)
− eiq′·(r+s/2)

√
n′q′9

(
r − s

2
, {nq}

)
9∗
(
r +

s

2
, {n′1, . . . , n′q′ − 1, . . .}

)
+ e−iq′·(r+s/2)

√
n′q′ + 19

(
r − s

2
, {nq}

)
9∗
(
r +

s

2
, {n′1, . . . , n′q′ + 1, . . .}

)}

=
∑
q′
F(q′)

{
eiq′·r√nq′ + 1fW

(
r,p− h̄q

′

2
, {n1, . . . , nq′ + 1, . . .}, {n′q}, t

)
− e−iq′·r√nq′fW

(
r,p +

h̄q′

2
, {n1, . . . , nq′ − 1, . . .}, {n′q}, t

)
− eiq′·r

√
n′q′fW

(
r,p +

h̄q′

2
, {nq}, {n′1, . . . , n′q′ − 1, . . .}, t

)
+ e−iq′·r

√
n′q′ + 1fW

(
r,p− h̄q

′

2
, {nq}, {n′1, . . . , n′q′ + 1, . . .}, t

)}
. (20)

The matrix element in the above equation contains two different sets of phonon occupation
numbers{nq} and{n′q}. Each term in the right-hand side of equation (20) represents a phonon
interaction event (vertex) that changes only one set, increasing or decreasing the phonon
occupation number of modeq′ by unity and changing the electron momentum by ¯hq/2.

4.6. The integral equation

Collecting the above results, the following equation is obtained:(
∂

∂t
+
p

m
· ∇r − eE · ∇p

)
fW(r,p, {nq}, {n′q}, t)

= 1

ih̄
(E({nq})− E({n′q}))fW (r,p, {nq}, {n′q}, t)

+
∫

dp′ VW(r,p′ − p)fW (r,p′, {nq}, {n′q}, t) + Ξ(r,p, {nq}, {n′q}, t)
(21)

whereΞ(r,p, {nq}, {n′q}, t) represents the right-hand side of equation (20).
The left-hand side of equation (21) has the same form as the semiclassical Boltzmann

equation. Thus path variables can be used in analogy with the Chambers formulation of
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transport. Then, integrating over time, one obtains [8]

fW(r,p, {nq}, {n′q}, t) = fW
(
r − p

m
(t − t0) +

F

2m
(t − t0)2,p− F (t − t0), {nq}, {n′q}, t0

)
× e−(i/h̄)(E({nq})−E({n

′
q}))(t−t0) +

∫ t

t0

dt ′ e−(i/h̄)(E({nq})−E({n
′
q}))(t−t ′)

×
{∫

dp′ VW
(
r − p

m
(t − t ′) +

F

2m
(t − t ′)2,p′ − p + F (t − t ′)

)
× fW

(
r − p

m
(t − t ′) +

F

2m
(t − t ′)2,p′, {nq}, {n′q}, t ′

)
+ Ξ

(
r − p

m
(t − t ′) +

F

2m
(t − t ′)2,p− F (t − t ′), {nq}, {n′q}, t ′

)}
(22)

with

F = eE. (23)

The above equation shows that the value of the WF at a point(r,p) at timet comes from three
contributions:

(a) A ballistic term, equal to the WF’s value at timet0 on the trajectory of a classical particle,
which is at(r,p) at time t , and multiplied by a phase factor corresponding to the free
evolution of the phonon bath.

(b) A term collecting, for each timet ′ and each transferred momentum(p−p′), contributions
from the WF at points of phase space that, after a scattering by the potential, are on the
‘right’ classical trajectory that reaches(r,p) at time t . This term is multiplied by the
transfer functionVW acting as a weighting factor and by the free-phonon evolution phase
factor.

(c) A term collecting for each timet ′ the four contributions of the electron–phonon interaction
term. This last term will be discussed in more detail in the following.

5. Wigner paths, the phonon average and boundary conditions

5.1. Wigner paths

In section 3 we showed that, if neither potential nor phonon scattering is considered, a single
δ-like contribution of the WF keeps itsδ-character while evolving in time. Equation (22)
shows that, taking into account phonon scattering, we may select a single scattering timet ′

and a single modeq′ of the phonon interacting with the electron, and eachδ-contribution
still remains aδ. With the potential, we have to select a scattering timet ′ and a transferred
momentum, and again aδ-like WF keeps itsδ-character.

These considerations allow us to define a WP [6] as the path followed by a ‘simulative
particle’ carrying aδ-contribution of the WF through the Wigner phase space. The concept of
WP must not be confused with the concept of Wigner trajectories [9, 10] based on modified
Hamilton equations. Only for potentials up to quadratic do WPs and Wigner trajectories
coincide and coincide with classical trajectories [6].

Equation (22) may be iteratively substituted into itself giving a Neumann expansion
describing the evolution of the WF by means of simulative particles following classical
trajectories and experiencing two kinds of scattering:
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(a) by a potentialV (r) that changes the particle’s momentum fromp′ to p;
(b) by an electron–phonon coupling that increases (decreases) by one the number of phonons

in a phonon modeq of a single set{nq} and decreases (increases) a particle’s momentum
by h̄q/2.

The series obtained may be truncated to arbitrary order and solved by a Monte Carlo
technique, sampling the integrals over the scattering times and the momentum transferred by
the potential or phonons, in complete analogy to the ‘weighted Monte Carlo’ solution of the
Boltzmann equation in its integral form [11].

As previously noted, we are interested in the evolution of a WF that is diagonal over
phonon occupation numbers at the initial and final times. The requirement of initial diagonality
is imposed by takingfW(r,p, {nq}, {n′q}, t0) 6= 0 only if nq = n′q ∀q. To have a diagonal final
WF, we simply write equation (22) for the specificfW(r,p, {nq}, {nq}, t). This choice implies
that only terms containing a sequence of creation and annihilation operators that change in the
same way (or do not change) the two sets of phonon occupation numbers are different from
zero. As a consequence, only WPs with an even number of vertices involving a modeq are
present.

As an example let us write out the unperturbed term and the first-order correction, in which
no phonon interaction term is present:

f 0
W(r,p, {nq}, {nq}, t) = fW

(
r +

p

m
(t0 − t) +

F

2m
(t0 − t)2,p + F (t0 − t), {nq}, {nq}, t0

)
(24)

11fW(r,p, {nq}, {nq}, t)
=
∫ t

t0

dt ′
∫

dp′ VW
(
r − p

m
(t − t ′) +

F

2m
(t − t ′)2,p′ − p + F (t − t ′)

)
× f 0

W

(
r − p

m
(t − t ′) +

F

2m
(t − t ′)2,p′, {nq}, {nq}, t ′

)
. (25)

The expression for the second-order correction will contain each WP with two scattering
events but, due to the diagonality requirement, only five terms will survive, representing five
‘classes’ of paths:

(1) paths with two potential scatterings,
(2) paths with a phonon absorption and a phonon emission at the second vertex,
(3) paths with a phonon absorption and a phonon emission at the first vertex,
(4) paths with phonon emissions at both vertices,
(5) paths with phonon absorptions at both vertices.

The paths associated with (3) and (4) are represented in the diagrams contained in figure 2(a).
They correspond to the semiclassical paths whereq/2 is transferred to the electron at
each vertex, while the dynamics between the two vertices is a ballistic evolution with the
correspondingp-value. If the process corresponds to a real transition, the second momentum
transfer adds to the first one, so the total phonon momentum ¯hq is transferred to the electron.
For virtual transitions at the second vertex of the interaction, half of the phonon momentum
is given back to the phonon system and the electron recovers the originalp-value that it had
at the beginning of the interaction. The path is anyway influenced by the virtual transitions,
which are associated with the polaronic effect.

This interpretation can be extended to higher-order corrections (see, e.g., figure 2(b)).
When time integrations are performed, each perturbative term contributes to the Wigner
correction1fW by adding a sum over infinite paths like those represented in figure 2.
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Figure 2. Examples of WPs. (a) A second-order contribution due to real (left) and virtual (right)
emission of a phonon modeq. (b) A fourth-order correction involving two phonon scatterings.
The two time lines represent the action of the evolution operator on the two parts of the density
matrix.

An integral over all possible WPs provides the evolution of the WF of the system of interest.
A new computational approach to the solution of the Wigner quantum transport equation based
on the generation of WPs is in currently being applied by the present authors.
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5.2. The phonon average

A very important point not yet discussed here is how the trace over the phonon variables is
taken. As stated above (section 2), such a trace operation is performed, in the present scheme,
on the solution of the integral equation derived in the previous section. We assume, as an initial
condition for our problem, a separate equilibrium density matrix, which is the product of an
electron distribution function and the equilibrium phonon distribution, so the initial condition
for the WF is

fW(r,p, {nq}, {nq}, t0) = f eW (r,p, t0)
∏
q

Peq(nq) (26)

wherePeq is the probability distribution for the occupation of the phonon modeq. For the
evaluation of contributions to the WF at timet which are diagonal in the phonon coordinates,
each contribution to the scattering term in equation (22) contains a phonon mode twice and
has factors like

1fW(r,p, {nq}, {nq}, t) ∝ n1 · · · (nq′ + 1) · · · fW(r,p, {n′q}, {n′q}, t0). (27)

The generation of these terms is repeated a very large number of times for eachnq. Then, if
hot-phonon effects are ignored, we can have the following cases:

(a) Forq not involved in a transition,∑
{nq}

Peq(nq) = 1. (28)

(b) For real or virtual absorptions, taking into account how the phonon occupation numbers
appear in equation (20),∑

nq

(nq + 1)Peq(nq + 1) = 〈nq〉 ∑
nq

nqPeq(nq) =
〈
nq
〉
. (29)

Similarly, for real or virtual emissions,∑
nq

nqPeq(nq − 1) = 〈nq + 1
〉 ∑

nq

(nq + 1)Peq(nq) =
〈
nq + 1

〉
. (30)

In all cases we can eventually use the equilibrium Bose distribution for the evaluation of the
scattering term without introducing any approximation to the electron–phonon coupling, but
with the assumption that the phonon gas is kept at equilibrium.

5.3. Boundary conditions

The mathematical procedure described in the previous sections contains a formal integration
over time of the differential equation obtained after the substitution of the path variables
introduced. Let us now assume that the WF is known at timet0 inside a closed region of phase
space and at any timet > t0 on its boundary. In such a case, instead of performing the time
integration fromt0 to t , we can perform this integration from̄t to t , wheret̄ = t0 in the case
where the ‘ballistic path’ that terminates at(r,p) at time t starts att0 inside the domain of
interest; in the case where the ‘ballistic path’ crosses the boundary at a timetb > t0, we have
t̄ = tb. With this integration procedure and its iterative expansion, it can be seen that the WF
in r at t is given by

(a) all paths that start inside the region of interest at timet0 and end inr at timet after an
arbitrary number of scattering events without exiting this region and

(b) all paths that enter the region of interest at any time aftert0 and again suffer any number
of interactions inside [12].
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This picture is again strictly analogous to the corresponding semiclassical transport picture.
It must be noted that the WF of the electron–phonon system must be known at the boundary

of the system of interest. For example, if electrons are interacting with phonons while entering
the region of interest, then this information must be contained in the boundary condition for
the WF. If the boundary is located at a metallic contact, then we know that electron–electron
interaction is very effective in destroying the phase correlation of the electron wavefunction
that constitutes the difference between the WF and the semiclassical distribution function. In
such a case it may be reasonable to use semiclassical boundary conditions [12]. In the general
case it may be difficult to correctly account for electron–phonon interaction at the boundary
and for the feedback of the device dynamics to the outside region near the boundary. These
problems are not new. They have all been faced (and only partially solved) in semiclassical
transport theory.

6. The two-time Wigner function

If the one-time density matrix in the definition of the WF is substituted for with the two-time
density matrix (or the Green functionG< [13]), and the proper Fourier transform is taken, the
following WF is obtained:

fW(r,p, {nq}, {n′q}, ω, t) =
∫

ds
∫

dτ e−i((1/h̄)p·s−ωτ)

×
〈
r +

s

2
, {nq}

∣∣∣∣∣ρ(t + τ/2, t − τ/2)
∣∣∣∣∣r − s2, {n′q}

〉
(31)

wherep andω are now to be considered as independent variables. Thus the WF contains
information about both the momentum and energy of the electron, separately. The spectral
density of the electron interacting with phonons and other agents would then be obtained.
However, if the theory developed above is repeated for this new function, the same equation
is obtained but withω appearing as a parameter. The reason for this is that using a time-
independent potential and including the phonons in the system leads to a time-independent
Hamiltonian. In this case the energy is conserved andω, which represents the total energy of
the system, does not change as a consequence of the scattering events. Now one could think of
the possibility of subtracting the potential energy at the point of the ‘particle’ and the energy
of the phonon gas from the total energy to keep track of the electron kinetic and interaction
energy. Unfortunately this is not possible, since during the scattering process (between two
interaction vertices) the energy of the phonon gas is not well defined.

Alternatively it may be reasonable to consider the electron–phonon interaction as described
by a time-dependent potential, as is usually done in the semiclassical theory of the interaction
of radiation with matter. If electrons interact with an external potentialV (r, t) depending on
time, the equation of motion for the WF turns out to be(
∂

∂t
+
p

m
· ∇r

)
fW(r,p, {nq}, {n′q}, ω, t)

=
∫

dp′
∫

dω′ VW(r,p− p′, ω − ω′, t)fW (r,p′, ω, t) (32)

where

VW(r,p, ω, t) = 1

2πh3

∫
ds e−(i/h̄)p·s

∫
dτ eiωτ

× 1

ih̄

[
V

(
r − s

2
, t − τ

2

)
− V

(
r +

s

2
, t +

τ

2

)]
. (33)
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The suppression of the time dependence inV leads to the appearance ofδ(ω−ω′) on the
right-hand side of equation (32), and equation (15) is recovered.

Let us consider now the phonons as an external classical field depending on time. In this
case the electron–phonon interaction potential can be written as

Ve−p(t) =
∑
q

(Aqe
iq·re−iω0t − A∗qe−iq·reiω0t ) (34)

whereAq is the amplitude of the phonon field corresponding to modeq. The phonon distrib-
ution {nq} will then be reintroduceda posteriori. The equation of motion for the WF can then
be written as

ih̄
∂

∂t
fW (r,p, {nq}, {n′q}, ω, t) =

∑
q

{
Aqe

iq·re−iω0t fW

(
r,p− h̄q

2
, ω − ω0

2
, t

)
− A∗qe−iq·reiω0t fW

(
r,p + h̄

q

2
, ω +

ω0

2
, t

)
− Aqeiq·re−iω0t fW

(
r,p + h̄

q

2
, ω +

ω0

2
, t

)
+ A∗qe

−iq·reiω0t fW

(
r,p− h̄q

2
, ω − ω0

2
, t

)}
. (35)

It should be noticed that this result corresponds to the one obtained previously, where the
inclusion of the energy dependence is accounted for by adding (emission) or subtracting
(absorption) half of the phonon energy at each interaction vertex, similarly to what must
be done for the momentum transfer.

The path simulation approach described above for the traditional one-time WF can be
followed also for the WF that carries separate information for electron energy and momentum.
The initial/boundary condition must assume given values forp andω (e.g. that of free particles:
h̄ω = p2/(2m)+V (r)− eE · r). Then at each phonon vertex, half of the phonon energy must
be transferred to (or from) the electron. At the final timet , the electron energy ¯hω (containing
the kinetic and interaction energy) is obtained by subtracting from ¯hω the potential energy of
the final position of the particle.

7. Conclusions

In the present paper we have presented a survey of the research performed by the authors in the
field of the theory of quantum transport of electrons in mesoscopic systems. The traditional
WF is extended to include phonons. The resulting integro-differential equation can be solved
iteratively, with given initial and/or boundary conditions, and the trace over phonons can be
taken for the solution obtained. Such a solution can be obtained as a sum of contributions, each
due to a ’particle’ path, formed by ballistic fragments described by classical dynamics (of free
electrons or of electrons subject to a constant, uniform electric field), separated by interaction
vertices due to electron–phonon or potential interaction. The absorption (or emission) of a
phonon corresponds to two interaction vertices, each of which transfers half of the phonon
momentum to the electron.

Between the two vertices of a phonon process, an applied field modifies the electron path
(the intracollisional field effect) or other vertices may be present (multiple collisions). Energy
conservation would be ensured by sufficient interference between all possible trajectories, but
this interference is made incomplete by the occurrence of other scattering processes (collisional
broadening).
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The theory has also been extended to consider a two-time density matrix (orG< Green
function) that leads to the definition of a WF that depends on the momentum and energy of the
interacting electron, separately. The path description of the WF dynamics remains also in this
case, and at each vertex half of the phonon energy is transferred to (or taken by) the electron.

A Monte Carlo approach to the evaluation of the WF of electrons in mesoscopic systems,
very similar to the traditional Monte Carlo approach to semiclassical transport, can then be
developed based on the WF paths discussed in this paper. If the two-time approach is assumed,
a Monte Carlo derivation of the spectral density of electrons interacting with phonons would
be obtainable.
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